m惯及
m引分别表示物体的(与加速度成反比的)惯性质
量和(与引力成正比的)引力质量,M是地球的引力质量,r
是物体距地心的距离。上式还可以写成
m引.
GM .
,a =
m惯
r2 ..
比萨斜塔的实验说明,不论任何物体,在地球的引力作用下产
生的加速度都是相同的。那么由上式看来,这就意味着各种
物体的
m惯
/m引值都应当是相同的。或者说
引力质量
惯性质量
是一个普适常数。它与具体的物性并无关系。
在物理学中,一个普适常数的发现往往要引出整套的理
论。普适的光速
c引出了狭义相对论,普朗克常数
h引出了
量子论。普适常数
m惯
/m引则是解决引力问题的关键。
爱因斯坦曾这样写道:“……在引力场中一切物体都具
有同一加速度。这条定律也可以表述为惯性质量同引力质量
相等的定律。它当时就使我认识到它的全部重要性。我为它
的存在感到极为惊奇,并猜想其中必定有一把可以更加深入
地了解惯性和引力的钥匙。”(1)
引力的本性就是“没有”引力
爱因斯坦是如何利用“m惯
/m引是普适常数”这把钥匙的
(1)《爱因斯坦文集》,第一卷,第
320页。
·71·
呢?
呢?
当电梯相对于地球静止的时候,实验家将看到,电梯里
的东西都会受到一种力。如果没有其它的力与这种力相平衡,
这种力就会使物体落向电梯的地板。而且,所有物体在落向
地板时,加速度都是一样的。根据这些现象,实验家立即可以
作出结论:他这个电梯受到了外界的引力作用。
好!现在让电梯本身也做自由下落的运动。这时,实验
家将发现,他的电梯里的一切东西都不再受原来那种力的作
用,所有物体都没有原来的那种加速度了。即达到了我们通
常所说的“失重”状态。这时电梯里的物体不再表现出任何受
引力作用的迹象。无论苹果或羽毛,都可以自由地停留在空
间,而不“下落”。实验家既可以在电梯的底部行走,也可以
在顶部行走,两种行走所用的力气完全一样,并不需要任何杂
技演员那样的技巧。也就是说,实验家观测任何物体的任何
力学现象,都不能看到任何引力的迹象。
接着,爱因斯坦作了更进一步的引伸,他认为,在上述电
梯里的实验家不仅通过任何力学现象看不到引力的迹象,而
且通过其它任何物理实验也都看不到引力的迹象。即是说,
在这种电梯的参考系中,引力全部消除了。电梯实验家不能
通过自己电梯中的物理现象来判断它的电梯之外是不是有一
·72·
图
7-3 爱因斯坦理想电梯实验
个地球这样的引力作用源,他也测量不出自己的电梯是否有
加速运动,就象在萨尔维阿蒂大船里的观察者测不到大船是
否在运动一样。
简言之,我们可以在任何一个局部范围(关于局部一词的
含义,下面还要再讨论)找到一个参考系(即爱因斯坦的电
梯),在其中引力的作用全被消除了。这就是引力的最重要特
性。在物理学中其它的力都没有这种属性。例如宏观的电磁
力或原子核、粒子范围的强作用和弱作用,都不可能通过选择
适当的参考系而完全加以消除。
引力的本性就在于引力能在某种参考系(爱因斯坦电梯)
中局部地消除。这就是爱因斯坦根据比萨斜塔实验抽象出来
的一个引力的基本性质。通常叫做等效原理。
·73·
局部惯性系
局部惯性系
讲到这里,你可能产生疑惑。因为通常我们就是以匀速
运动的萨尔维阿蒂大船作为惯性参考系的。而爱因斯坦的电
梯相对于地球,也就是相对于萨尔维阿蒂大船来说,并不是匀
速运动的,而是有加速度(自由落体加速度)的。这两者是否
有矛盾呢?
是有矛盾!在广义相对论发展之前,萨尔维阿蒂大船一
直被认为是惯性参考系。然而,严格说,这是不对的。因为,
在萨尔维阿蒂大船中的实验家看到船中的水滴要向下作加速
运动,可是他又看不到有谁对水滴施加了作用(注意,大船是
完全封闭的,实验家不知道外界到底有没有东西)。这就是说
水滴并不满足动者恒动这条定律,因而它不是真正的惯性参
考系(顶多只能说是近似于惯性参考系)。反之,在爱因斯坦
电梯里,倒是可以实现动者恒动。
现在来谈“局部”一词的含义。我们说引力对一切物体产
生的加速度相同,这句话是对处在同一点上的物体来说的,在
不同点上的引力加速度一般是不相同的。例如图
7-4,在地
·74·
球上不同地点的引力加速度是不相同的。因此,一个作自由
落体运动的电梯,只能将一个点附近小范围内的引力作用(例
如引力加速度)全部消除,而不可能在一个大范围中把引力的
作用全部消除掉。例如,在图
7-4中
A点的电梯只能消除
点上的引力作用,而对
B点就不适用。
图
7-3 不同地点的重力加速度是不同的
因此,如果认为上述爱因斯坦电梯才是严格意义下的惯
性参考系,那末这种参考系只能适用于局部的范围。
A点处
的电梯只是
A点上的惯性参考系。B点处的惯性参考系则必
须用
B点处的自由下落电梯。
什么是引力?
现在我们可以试着来回答什么是引力这个艰深的问题
了。
·75·
让我们再一次回顾萨尔维阿蒂那段有名的话。其中有这
样一句“使船以任何速度前进,只要运动是匀速……
”。这是
表明,萨尔维阿蒂大船只能按匀速运动。也就是说,在广义相
对论之前,人们认为不同的惯性参考系(萨尔维阿蒂大船)之
间只能有相对匀速运动,不可能有加速运动。牛顿的力学,牛
顿的万有引力理论都是建筑在这个基础之上的。
然而,广义相对论的发展表明,真正严格的惯性系只能
是一些局部惯性系(爱因斯坦电梯)。现在各个点上的局部惯性
系之间是可以有相对加速度的。例如前面图
7-3中的
A、B
两点上的电梯之间是有加速运动的。
那么什么是引力呢,引力的作用就在于决定各个局部惯
性系之间的联系。在任何一个局部惯性系中,我们是看不到
引力作用的。我们只能在这些局部惯性系的相互关系中。看
到引力的作用。
在物理学的其它部门中,我们的工作程序总是这样:取
定一定的参考系用以度量有关的物理量,然后经过实验总结
出其中的规律,发现基本方程。在这个过程中时空的几何性
质(即所取的参考系)是不受有关的物理过程影响的。所以,
这些问题中的基本方程只是物理量之间的一些关系,即
一些物理量=另一些物理量。
但是,在引力问题中,引力一方面要影响各种物体的运
动,另一方面引力又要影响各局部惯性系之间的关系。所以,
现在我们不可能先行规定时空的几何性质,时空的几何性质
本身就是有待确定的东西。因此,在引力基本方程式中不可
·76·
能没有时空的几何量。它应当反映出,引力本身及引力与其
他物质之间的作用,即应有下列形式的方程:
能没有时空的几何量。它应当反映出,引力本身及引力与其
他物质之间的作用,即应有下列形式的方程:
爱因斯坦的引力场方程
为了寻找这个引力的基本方程,爱因斯坦前后用去了七、
八年时间。其中有多次的失败。到了
1915年末,他终于找到
了自己认为满意的引力场方程。当时,他写信给索末菲说:“上
个月是我一生中最激动、最紧张的时期之一,当然也是收获最
大的时期之一。我感到高兴的是,不仅牛顿理论作为第一近似
值得出了,而且水星近日点运动(每一百年
43″)作为第二近
似值也得出了”(1)。
从比萨斜塔开始,到
43″/百年为止,它们之间的联系终
于又被找到了。
爱因斯坦寻找引力场方程的整个奋斗过程,是很值得研
究的一段物理学史。它在方法论上给人很多启示。不过,在
这本小册子中不可能详细地讨论了。因为,这些讨论不可避
免地要涉及大量的数学工具。现在我们只写出它的最后结
果
0 0